Abstract

Extensive databases of satellite imagery are now available and can be used to undertake assessments of the mass balance of glaciers. Previous studies have mapped the end-of-season snowlines (ESS) on glaciers from satellite imagery to find their snowline altitudes (SLA) and used these as proxies for the glacier equilibrium-line altitudes (ELA). This approach is advantageous because it can be implemented at scale and may employ automated methods. The veracity of using remotely measured SLAs as a proxy for in-situ measured ELAs however, has not yet been robustly demonstrated. This project is undertaking a systematic mapping of ESSs on glaciers with existing measured mass balance records to determine the errors associated with remotely measured SLAs. Glaciers are selected from the World Glacier Monitoring Service (WGMS) Fluctuations of Glacier (FoG) database. For each ELA record, we identify the Landsat image closest in date to the original ELA measurement (where cloud cover is minimal) and the image with the highest altitude snowline for the year. For each image, the snowline is mapped, and its corresponding SLA is extracted from the ASTER Global Digital Elevation Map (ASTERGDEM). The SLAs vs. ELAs of glaciers covering time series greater than 20 years are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.