Abstract

Because meningitis and septicaemia caused by Neisseria meningitidis are major public health problems worldwide, the design of a broadly protective vaccine remains a priority. Type IV pili (Tfp) are surface-exposed filaments playing a key role in pathogenesis in a variety of bacterial species, including N. meningitidis, that have demonstrated vaccine potential. Unfortunately, in the meningococcus, the major pilus subunit PilE usually undergoes extensive antigenic variation and is therefore not suitable as a vaccine component. However, we have recently shown that N. meningitidis Tfp contain low abundance subunits PilX, PilV and ComP, collectively called minor pilins, that are highly conserved and modulate Tfp-linked functions key to pathogenesis. This prompted us to examine the vaccine potential of these proteins by assessing whether sera directed against them have bactericidal properties and/or are able to interfere with Tfp-linked functions. Here we show that minor pilin proteins are recognized by sera of patients convalescent from meningococcal disease and that antibodies directed against some of them can selectively interfere with Tfp-linked functions. This shows that, despite their apparent inability to elicit bactericidal antibodies, minor pilins might have vaccine potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.