Abstract

BackgroundBiodiversity patterns are inherently complex and difficult to comprehensively assess. Yet, deciphering shifts in species composition through time and space are crucial for efficient and successful management of ecosystem services, as well as for predicting change. To better understand species diversity patterns, Germany participated in the Global Malaise Trap Program, a world-wide collection program for arthropods using this sampling method followed by their DNA barcode analysis. Traps were deployed at two localities: “Nationalpark Bayerischer Wald” in Bavaria, the largest terrestrial Natura 2000 area in Germany, and the nature conservation area Landskrone, an EU habitats directive site in the Rhine Valley. Arthropods were collected from May to September to track shifts in the taxonomic composition and temporal succession at these locations.New informationIn total, 37,274 specimens were sorted and DNA barcoded, resulting in 5,301 different genetic clusters (BINs, Barcode Index Numbers, proxy for species) with just 7.6% of their BINs shared. Accumulation curves for the BIN count versus the number of specimens analyzed suggest that about 63% of the potential diversity at these sites was recovered with this single season of sampling. Diversity at both sites rose from May (496 & 565 BINs) to July (1,236 & 1,522 BINs) before decreasing in September (572 & 504 BINs). Unambiguous species names were assigned to 35% of the BINs (1,868) which represented 12,640 specimens. Another 7% of the BINs (386) with 1,988 specimens were assigned to genus, while 26% (1,390) with 12,092 specimens were only placed to a family. These results illustrate how a comprehensive DNA barcode reference library can identify unknown specimens, but also reveal how this potential is constrained by gaps in the quantity and quality of records in BOLD, especially for Hymenoptera and Diptera. As voucher specimens are available for morphological study, we invite taxonomic experts to assist in the identification of unnamed BINs.

Highlights

  • Initiated in 2012 by the Centre for Biodiversity Genomics at the Biodiversity Institute of Ontario (BIO), the Global Malaise Trap Program (GMTP) is a collaboration involving more than 30 international partners

  • Because arthropods comprise the overwhelming majority of species in terrestrial habitats (Kremen et al 1993) and possess tremendous trait variation, it would be a quantum leap for ecology and the modelling of biodiversity change if their responses to environmental change could be assessed (Timms et al 2012)

  • This was impossible because no systematic approach was available to rapidly identify and quantify arthropod diversity, a barrier which prevented the detection of shifts in species composition in response to habitat disturbance (Samways 1993)

Read more

Summary

Introduction

Initiated in 2012 by the Centre for Biodiversity Genomics at the Biodiversity Institute of Ontario (BIO), the Global Malaise Trap Program (GMTP) is a collaboration involving more than 30 international partners It aims to provide an overview of arthropod diversity by coupling the large-scale deployment of Malaise traps with the use of specimen-based DNA barcoding to assess species diversity. Because arthropods comprise the overwhelming majority of species in terrestrial habitats (Kremen et al 1993) and possess tremendous trait variation, it would be a quantum leap for ecology and the modelling of biodiversity change if their responses to environmental change could be assessed (Timms et al 2012) Until recently, this was impossible because no systematic approach was available to rapidly identify and quantify arthropod diversity, a barrier which prevented the detection of shifts in species composition in response to habitat disturbance (Samways 1993).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.