Abstract

We consider a physical system in which the description of states and measurements follow the usual quantum mechanical rules. We also assume that the dynamics is linear, but may not be fully quantum (i.e., unitary). We show that in such a physical system, certain complementary evolutions, namely, cloning and deleting operations that give a better fidelity than quantum mechanically allowed ones, in one (inaccessible) region, lead to signaling to a far-apart (accessible) region. To show such signaling, one requires certain two-party quantum correlated states shared between the two regions. Subsequent measurements are performed only in the accessible part to detect such phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.