Abstract

The bandpass eddy covariance method has been used to measure the turbulent flux of scalar quantities using a slow-responsescalar sensor. The method issimilar in principle to the traditional eddy correlation method but includes the estimation of high-frequency components of the flux on the basis of cospectral similarity in the atmospheric surface layer. In order to investigate the performance of the method, measurements of the water vapour flux over a forest with the bandpass eddy covariance method and the direct eddy correlation method were compared. The flux obtained by the bandpass eddy covariance method agreed with that by the eddy correlation method within ±20% for most cases, in spite of a rather slow sensor-response of the adopted hygrometer. This result supports its relevance to a long-term continuous operation, since a stable, low-maintenance,general-purpose sensor canbe utilized for scalar quantities. Oneweak point of the method isits difficulty in principle to measure the correct flux when the magnitude of the sensible heat flux is very small, because the method uses the sensible heat flux as a standard reference for the prediction of undetectable high-frequency components of the scalar flux. An advanced method is then presented to increase its robustness. In the new method, output signals from a slow-response sensor are corrected using empirical frequency-responsefunctions for the sensor,thereby extending the width of the bandpass frequency region where components of the flux are directly measured (not predicted). The advanced method produced correct fluxes for all cases including the cases of small sensible heat flux. The advanced bandpass eddy covariance method is thus appropriate for along-term measurement of the scalar fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.