Abstract

The properties of a family of new adaptive symplectic conservative numerical methods for solving the Kepler problem are examined. It is shown that the methods preserve all first integrals of the problem and the orbit of motion to high accuracy in real arithmetic. The time dependences of the phase variables have the second, fourth, or sixth order of accuracy. The order depends on the chosen values of the free parameters of the family. The step size in the methods is calculated automatically depending on the properties of the solution. The methods are effective as applied to the computation of elongated orbits with an eccentricity close to unity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.