Abstract

It is now widely recognized that contaminant release from low permeability zones can sustain plumes long after primary sources are depleted, particularly for chlorinated solvents where regulatory limits are orders of magnitude below source concentrations. This has led to efforts to appropriately characterize sites and apply models for prediction incorporating these effects. A primary challenge is that diffusion processes are controlled by small-scale concentration gradients and capturing mass distribution in low permeability zones requires much higher resolution than commonly practiced. This paper explores validity of using numerical models (HydroGeoSphere, FEFLOW, MODFLOW/MT3DMS) in high resolution mode to simulate scenarios involving diffusion into and out of low permeability zones: 1) a laboratory tank study involving a continuous sand body with suspended clay layers which was ‘loaded’ with bromide and fluorescein (for visualization) tracers followed by clean water flushing, and 2) the two-layer analytical solution of Sale et al. (2008) involving a relatively simple scenario with an aquifer and underlying low permeability layer. All three models are shown to provide close agreement when adequate spatial and temporal discretization are applied to represent problem geometry, resolve flow fields and capture advective transport in the sands and diffusive transfer with low permeability layers and minimize numerical dispersion. The challenge for application at field sites then becomes appropriate site characterization to inform the models, capturing the style of the low permeability zone geometry and incorporating reasonable hydrogeologic parameters and estimates of source history, for scenario testing and more accurate prediction of plume response, leading to better site decision making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.