Abstract
The study of gene-environment interactions is an increasingly important aspect of genetic epidemiological investigation. Historically, it has been difficult to study gene-environment interactions using a family-based design for quantitative traits or when parent-offspring trios were incomplete. The QBAT-I provides researchers a tool to estimate and test for a gene-environment interaction in families of arbitrary structure that are sampled without regard to the phenotype of interest, but is vulnerable to inflated type I error if families are ascertained on the basis of the phenotype. In this study, we verified the potential for type I error of the QBAT-I when applied to samples ascertained on a trait of interest. The magnitude of the inflation increases as the main genetic effect increases and as the ascertainment becomes more extreme. We propose an ascertainment-corrected score test that allows the use of the QBAT-I to test for gene-environment interactions in ascertained samples. Our results indicate that the score test and an ad hoc method we propose can often restore the nominal type I error rate, and in cases where complete restoration is not possible, dramatically reduce the inflation of the type I error rate in ascertained samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.