Abstract

We determine the joint asymptotic normality of kernel and weighted least-squares estimators of the upper tail index of a regularly varying distribution when each estimator is a bivariate function of two parameters: the tuning parameter is motivated by possible underlying second-order behavior in regular variation, while no such behavior is assumed, and the fraction parameter determines that upper portion of the sample on which the estimator is based. Under the hypothesis that the scaled asymptotic biases of the estimators vanish uniformly in the parameter points considered, these results imply joint asymptotic normality for deviations of ratios of the estimators from 1, which in turn yield asymptotic chi-square tests for checking the small-bias hypothesis, equivalent to the constructibility of asymptotic confidence intervals. The test procedure suggests adaptive choices of the tuning and fraction parameters: data-driven (t)estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.