Abstract
ABSTRACTPortmanteau tests are typically used to test serial independence even if, by construction, they are generally powerful only in presence of pairwise dependence between lagged variables. In this article, we present a simple statistic defining a new serial independence test, which is able to detect more general forms of dependence. In particular, differently from the Portmanteau tests, the resulting test is powerful also under a dependent process characterized by pairwise independence. A diagram, based on p-values from the proposed test, is introduced to investigate serial dependence. Finally, the effectiveness of the proposal is evaluated in a simulation study and with an application on financial data. Both show that the new test, used in synergy with the existing ones, helps in the identification of the true data-generating process. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.