Abstract
We propose a new test against a change in correlation at an unknown point in time based on cumulated sums of empirical correlations. The test does not require that inputs are independent and identically distributed under the null. We derive its limiting null distribution using a new functional delta method argument, provide a formula for its local power for particular types of structural changes, give some Monte Carlo evidence on its finite-sample behavior, and apply it to recent stock returns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.