Abstract
AbstractIn geodetic deformation analysis observations are used to identify form and size changes of a geodetic network, representing objects on the earth’s surface. The network points are monitored, often continuously, because of suspected deformations. A deformation may affect many points during many epochs. The problem is that the best description of the deformation is, in general, unknown. To find it, different hypothesised deformation models have to be tested systematically for agreement with the observations. The tests have to be capable of stating with a certain probability the size of detectable deformations, and to be datum invariant. A statistical criterion is needed to find the best deformation model. Existing methods do not fulfil these requirements. Here we propose a method that formulates the different hypotheses as sets of constraints on the parameters of a least-squares adjustment model. The constraints can relate to subsets of epochs and to subsets of points, thus combining time series analysis and congruence model analysis. The constraints are formulated as nonstochastic observations in an adjustment model of observation equations. This gives an easy way to test the constraints and to get a quality description. The proposed method aims at providing a good discriminating method to find the best description of a deformation. The method is expected to improve the quality of geodetic deformation analysis. We demonstrate the method with an elaborate example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.