Abstract

Opportunistic routing is a candidate for multihop wireless routing where the network topology and radio channels vary rapidly. However, there are not many opportunistic routing algorithms that can be implemented in a real multihop wireless network while exploiting the node mobility. It motivates us to implement an opportunistic routing, random basketball routing (BR), in a real multi-robot network to see if it can enhance the capacity of the multihop network as mobility increases. For implementation purposes, we added some features, such as destination RSSI measuring, a loop-free procedure and distributed relay probability updating, to the original BR. We carried out the experiments on a real multi-robot network and compared BR with AODV combined with CSMA/CA (routing + MAC protocol). We considered both static and dynamic scenarios. Our experiments are encouraging in that BR outperforms AODV + CSMA/CA, particularly in dynamic cases; the throughput of BR is 6.6 times higher than that of AODV + CSMA/CA. BR with dynamic networks shows 1.4 times higher throughput performance than BR with static networks. We investigate the performance of BR in the large-scale network using NS-2 simulation. We verify the effect of node density, speed, destination beacon signal and loop-free procedure. According to the large-scale simulation, the end-to-end throughput grows with the node speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.