Abstract

Three-dimensional printable concrete (3DPC) has become increasingly popular in the building and architecture industries due to its low cost and fast design. Currently, there is great interest in the mix design methods and mechanical properties of 3DPC, particularly in relation to yield stress analysis. The ability to extrude and build 3D-printed objects can be significantly affected by factors such as the rate of extrusion, nozzle size, and type of pumps used. It has been observed that a yield stress lower than 1.5 to 2.5 kPa is not sufficient to maintain the shape stability of concrete, while a yield stress above this range can limit the material’s extrudability. Furthermore, the strength properties of 3DPC are influenced by factors such as changes in yield stress and superplasticiser dosages. To meet the high mechanical strength and durability requirements of 3DPC in the construction industry, it is essential to analyse the material’s early-age mechanical properties. However, the development of standardised test methods for 3DPC is still deficient. To address this issue, a bibliometric analysis was conducted to comprehensively review the diverse test methods and mechanical characteristics of 3DPC with different mix proportions. To produce high-performance concrete from various additives and waste materials, it is critical to have a basic understanding of the hydration processes of 3DPC. Moreover, a detailed analysis of the environmental impact and energy efficiency of 3DPC is necessary for its widespread implementation. This review article will highlight the recent trends, upcoming challenges, and benefits of using 3DPC. It serves as a taxonomy to navigate the field of 3DPC towards sustainable development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.