Abstract

The quantitative consistency of nucleon transfer reactions as a probe of the occupancy of valence orbits in nuclei is tested. Neutron-adding, neutron-removal, and proton-adding transfer reactions were measured on the four stable even Ni isotopes, with particular attention to the cross section determinations. The data were analyzed consistently in terms of the distorted wave Born approximation to yield spectroscopic factors. Valence-orbit occupancies were extracted, utilizing the Macfarlane-French sum rules. The deduced occupancies are consistent with the changing number of valence neutrons, as are the vacancies for protons, both at the level of <5%. While there has been some debate regarding the true "observability" of spectroscopic factors, the present results indicate that empirically they yield self-consistent results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.