Abstract

Photoconductive semiconductors operating in linear mode can be used for adaptive high-power microwave (HPM) generators by modulating incident light. This paper presents the design scheme and preliminary test results of a narrowband kW class adaptive photonic microwave generator by employing a wide-bandgap semi-insulating 6H-SiC photoconductive semiconductor and a burst-mode laser. The experimental scheme of the generator is described along with the circuit simulation of the radio frequency generator. The laser operated at a wavelength of 532 nm with a pulse width of 100 ns and a repetition rate of 100 Hz. The laser modulates the frequencies of the generated microwave, and preliminary tests are conducted in the frequency range of 0.8–1.2 GHz. The maximum output microwave power of the designed scheme reaches up to 2.6 kW when the bias voltage is 10 kV. The results confirm that this method can be used for high-power frequency-adjustable microwave signal generation. The microwave source system presented in this paper has continuously adjustable frequency and flexible waveform control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.