Abstract

The measurement error with normal distribution is universal in applications. Generally, smaller measurement error requires better instrument and higher test cost. In decision making, we will select an attribute subset with appropriate measurement error to minimize the total test cost. Recently, error-range-based covering rough set with uniform distribution error was proposed to investigate this issue. However, the measurement errors satisfy normal distribution instead of uniform distribution which is rather simple for most applications. In this paper, we introduce normal distribution measurement errors to covering-based rough set model and deal with test-cost-sensitive attribute reduction problem in this new model. The major contributions of this paper are fourfold. First, we build a new data model based on normal distribution measurement errors. Second, the covering-based rough set model with measurement errors is constructed through the “3-sigma” rule of normal distribution. With this model, coverings are constructed from data rather than assigned by users. Third, the test-cost-sensitive attribute reduction problem is redefined on this covering-based rough set. Fourth, a heuristic algorithm is proposed to deal with this problem. The experimental results show that the algorithm is more effective and efficient than the existing one. This study suggests new research trends concerning cost-sensitive learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.