Abstract

Software Product Lines (SPLs) embraces an enormous capacity of feature mixtures which cause challenges for evaluating software programs. Testsuite optimization plays major role to develope the quality of SPLs. In combinatorial testing (CT), pair wise fault coverage maximization and test case reduction accomplishes a substantial role for shrinking the testing cost of software programs. Many research works have been developed and designed for CT using different test suite reduction techniques. However Fuzzy clustering and TSRSO techniques do not provide a finest solution for test suite optimization problem. For that, Genetic Algorithm (GA) Technique is recommended and designed for test suite reduction in CT. Metaheuristic genetic algorithm delivers optimum solution in an effective manner. GA chooses and consolidates the testcases in a testsuite based on some principles such that maximum faults covered with minimum execution time. In Proposed GA, finest individuals are nominated for reproduction in order to create descendants of the succeeding generation. In addition, GA is a superior type of evolutionary algorithms generate finest solutions to optimization problems using selection, crossover and mutation operators. Consequently, GA is applied for resolving test suite reduction problem in CT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.