Abstract
This study elaborates the conflict management framework of unmanned aerial vehicles, focusing on the identification of the spatiotemporal interdependencies between them, with consideration of the future scalability problems in highly dense traffic scenarios. The paper first tries to justify the applied separation criteria among small cooperative unmanned aerial vehicles based on their performance characteristics and the planned missions’ type. The adopted criteria, obtained from the simulations of 160 missions, present a testing asset, referring to a current lack of the spatiotemporal requirements and a need for extending the research in this area to provide a more rapid integration of these vehicles into the civil controlled airspace. The paper then elaborates the computational framework for the conflict detection and resolution function and operational metrics for causal identification of the spatiotemporal interdependencies between two or more cooperative vehicles. The vehicles are considered as a conflict mission system that strives to achieve an efficient solution by applying certain maneuvering measures, before a loss of separation occurs. The operational trials of five local, short-range missions, supported by the simulation scenario, demonstrate the potential for a time-based complexity analysis in the conflict resolution processes with less demanding and more efficient coordinated maneuvers. The results show that those maneuvers would not induce any new conflicts and disrupt the cooperative mission system when the spatial capacity only might not be favorable in provision of the avoidance maneuvers within an available airspace.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.