Abstract

A new concept for a gaseous radiation detector is presented: the Tertiary Scintillation Gas Proportional Scintillation Counter (TS-GPSC). In this detector the electric field induced secondary scintillation is first detected by a CsI-coated GEM-like structure where it releases photoelectrons which are transferred through the GEM holes, with no charge multiplication, to another region where further field induced scintillation (tertiary) is produced and then again detected on a planar CsI-coated photocathode at the backplane of the detector. The electrons released therein are collected at a grid and constitute the detector's signal. Since there is no avalanche charge multiplication in the detector, the gain will be quite stable and, moreover, as the field induced scintillation yield is very high, and in spite of the low photocathode quantum efficiency, the gain will be high and with low fluctuations, so an improvement in the energy resolution as compared to other types of Gas Proportional Scintillation Counters is expected. The first prototype of the tertiary scintillation detector was tested in a xenon atmosphere for hard X-rays and experimental results are presented. Energy resolutions of 8.2% were achieved for 22.1 keV X-rays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.