Abstract

Binary organic photovoltaics (OPVs) fabricated by single-step (SS) deposition of a binary blend of polymer (or small molecule) donor and fullerene acceptor (SS binary OPV) are widely utilized. To improve the OPV performance, SS ternary OPVs utilizing a ternary blend consisting of two (or one) electron donor(s) and one (or two) electron acceptor(s) have been studied. SS ternary OPVs require more sensitive and complex optimization processes to optimize bulk heterojunctions with bicontinuous nanoscale phase separation of the donor and acceptor. We demonstrated a novel ternary OPV fabricated by sequential (SQ) deposition of a single polymer donor and a binary mixture consisting of a phenyl-C71-butyric acid methyl ester (PCBM) and nonfullerene acceptor, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2,3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC). In the SQ ternary OPV, PCBM effectively created a bicontinuous pathway for charge transport with a polymer, and ITIC mainly enhanced light absorption and photovoltage. This complementary effect was not observed in an SS ternary OPV utilizing the same donor and acceptors. Due to these complementary effects, the SQ ternary OPV exhibited a power conversion efficiency of 6.22%, which was 52 and 37% higher than that of the SQ binary OPV and the SS ternary OPV, respectively. In addition, the thermal stability of the SQ ternary OPV was found to be superior to that of the SS ternary OPV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.