Abstract
We revisit the construction method of even unimodular lattices using ternary self-dual codes given by the third author (M. Ozeki, in Théorie des nombres, J.-M. De Koninck and C. Levesque (Eds.) (Quebec, PQ, 1987), de Gruyter, Berlin, 1989, pp. 772–784), in order to apply the method to odd unimodular lattices and give some extremal (even and odd) unimodular lattices explicitly. In passing we correct an error on the condition for the minimum norm of the lattices of dimension a multiple of 12. As the results of our present research, extremal odd unimodular lattices in dimensions 44, 60 and 68 are constructed for the first time. It is shown that the unimodular lattices obtained by the method can be constructed from some self-dual ℤ6-codes. Then extremal self-dual ℤ6-codes of lengths 44, 48, 56, 60, 64 and 68 are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.