Abstract

Calcium puffs are localized Ca2+ signals mediated by Ca2+ release from the endoplasmic reticulum (ER) through clusters of inositol trisphosphate receptor (IP3R) channels. The recruitment of IP3R channels during puffs depends on Ca2+-induced Ca2+ release, a regenerative process that must be terminated to maintain control of cell signaling and prevent Ca2+ cytotoxicity. Here, we studied puff termination using total internal reflection microscopy to resolve the gating of individual IP3R channels during puffs in intact SH-SY5Y neuroblastoma cells. We find that the kinetics of IP3R channel closing differ from that expected for independent, stochastic gating, in that multiple channels tend to remain open together longer than predicted from their individual open lifetimes and then close in near-synchrony. This behavior cannot readily be explained by previously proposed termination mechanisms, including Ca2+-inhibition of IP3Rs and local depletion of Ca2+ in the ER lumen. Instead, we postulate that the gating of closely adjacent IP3Rs is coupled, possibly via allosteric interactions, suggesting an important mechanism to ensure robust puff termination in addition to Ca2+-inactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.