Abstract

Since the observation of the terahertz wave emission from the intrinsic Josephson junction of Bi2Sr2CaCu2O8, there have been a lot of arguments on properties of emitted electromagnetic waves. The difficulty in the theoretical analysis to identify the relation between the phase motion and emitted waves lies in the fact that there are more than hundred-times different length scales, the Josephson vortex size and wavelength of terahertz waves. We investigate, by numerical simulation, the relation between emitted electromagnetic waves and phase motions by use of a reduced model where the system of the junctions is approximated by the periodic system and couples to the electromagnetic fields in the vacuum with a large length scale. Due to the oscillatory Josephson current, the emitted wave shows a similar pattern as the dipole emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.