Abstract

Many time-domain terahertz applications require systems with high bandwidth, high signal-to-noise ratio and fast measurement speed. In this paper we present a terahertz time-domain spectrometer based on 1550 nm fiber laser technology and InGaAs photoconductive switches. The delay stage offers both a high scanning speed of up to 60 traces / s and a flexible adjustment of the measurement range from 15 ps – 200 ps. Owing to a precise reconstruction of the time axis, the system achieves a high dynamic range: a single pulse trace of 50 ps is acquired in only 44 ms, and transformed into a spectrum with a peak dynamic range of 60 dB. With 1000 averages, the dynamic range increases to 90 dB and the measurement time still remains well below one minute. We demonstrate the suitability of the system for spectroscopic measurements and terahertz imaging.

Highlights

  • Terahertz waves feature unique properties: like microwaves, terahertz radiation passes through a plethora of non-conducting materials, including paper, cardboard, plastics, wood, ceramics and glass-fiber composites [1]

  • In this paper we present a compact fiber-coupled THz-TDS system based on 1.5 μm fiber laser technology and InGaAs/InAlAs photoconductive switches

  • Due to a precise reconstruction of the time axis, the system drastically reduces the effect of jitter noise and achieves a high dynamic range in conjunction with broad bandwidth and fast measurement speed

Read more

Summary

Introduction

Terahertz waves feature unique properties: like microwaves, terahertz radiation passes through a plethora of non-conducting materials, including paper, cardboard, plastics, wood, ceramics and glass-fiber composites [1]. Terahertz spectrometers operating at 1.5 μm take full advantage of mature and costefficient telecom components and are well suited for real-world applications [14]. These advances notwithstanding, state-of-the-art THz-TDS systems usually achieve the targeted signal-to-noise (SNR) ratios via time-consuming signal averaging methods, which is no hurdle if the quality of the signal is more important than the measurement speed. In this paper we present a compact fiber-coupled THz-TDS system based on 1.5 μm fiber laser technology and InGaAs/InAlAs photoconductive switches. Due to a precise reconstruction of the time axis, the system drastically reduces the effect of jitter noise and achieves a high dynamic range in conjunction with broad bandwidth and fast measurement speed. We conclude with application examples in the fields of spectroscopy and imaging

System design and performance
Femtosecond laser
Long-travel delay line
Fast and highly precise delay
Terahertz antennas
Impact of jitter on the SNR
Terahertz spectroscopy
Terahertz imaging
Conclusion and Outlook
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.