Abstract
Devices operating at THz frequencies have been continuously expanded in many areas of application and major research field, which requires materials with suitable electromagnetic responses at THz frequency ranges. Unlike most naturally occurring materials, novel THz metamaterials have proven to be well suited for use in various devices due to narrow and tunable operating ranges. In this work, we present the results of two THz metamaterial absorber structures aiming two important device aspects; polarization sensitivity and broad band absorption. The absorbers were simulated by finite element method and fabricated through the combination of standard lift-off photolithography and electron beam metal deposition. The fabricated devices were characterized by reflection mode THz time domain spectroscopy. The narrow band absorber structures exhibit up to 95% absorption with a bandwidth of 0.1 THz to 0.15 THz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.