Abstract

The Canonical Polyadic Decomposition (CPD) of tensors is a powerful tool for analyzing multi-way data and is used extensively to analyze very large and extremely sparse datasets. The bottleneck of computing the CPD is multiplying a sparse tensor by several dense matrices. Algorithms for tensor-matrix products fall into two classes. The first class saves floating point operations by storing a compressed tensor for each dimension of the data. These methods are fast but suffer high memory costs. The second class uses a single uncompressed tensor at the cost of additional floating point operations. In this work, we bridge the gap between the two approaches and introduce the compressed sparse fiber (CSF) a data structure for sparse tensors along with a novel parallel algorithm for tensor-matrix multiplication. CSF offers similar operation reductions as existing compressed methods while using only a single tensor structure. We validate our contributions with experiments comparing against state-of-the-art methods on a diverse set of datasets. Our work uses 58% less memory than the state-of-the-art while achieving 81% of the parallel performance on 16 threads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.