Abstract

Vertical density matrix algorithm (VDMA), a tensor product state formulation of the ``higher-dimensional'' density matrix renormalization group, is applied to the spin 1/2 antiferromagnetic XXZ model on the checkerboard lattice. The VDMA was, in the preceding study, applied to the transverse field Ising model on the square lattice and the three-dimensional classical Ising model. In the present paper, its implementation procedure is modified in order to apply the VDMA to the XXZ model. Numerical accuracy of the VDMA is investigated for the XXZ model on the square lattice, which shows that the method gives reliable results for the ground state energy. In the frustrated region, VDMA results are compared with a simple calculation based on a magnetically disordered state. It is found that the weakly frustrated region is in the N\'{e}el ordered phase, while in the strongly frustrated region the realized phase cannot be identified clearly by the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.