Abstract
We develop a theory for the commutative combination of quantitative effects, their tensor, given as a combination of quantitative equational theories that imposes mutual commutation of the operations from each theory. As such, it extends the sum of two theories, which is just their unrestrained combination. Tensors of theories arise in several contexts; in particular, in the semantics of programming languages, the monad transformer for global state is given by a tensor. We show that under certain assumptions on the quantitative theories the free monad that arises from the tensor of two theories is the categorical tensor of the free monads on the theories. As an application, we provide the first algebraic axiomatizations of labelled Markov processes and Markov decision processes. Apart from the intrinsic interest in the axiomatizations, it is pleasing they are obtained compositionally by means of the sum and tensor of simpler quantitative equational theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.