Abstract

The tensile behavior of fiber-reinforced concrete (FRC) members co-reinforced with conventional deformed reinforcing bar (R/FRC members) is analytically investigated in regards to tensile stresses developed in the reinforcing bars, tensile stresses induced in the steel fibers bridging a crack, and the bond mechanism between the reinforcing bar and the concrete matrix. A tension-stiffening model for R/FRC members is developed through an analytical parametric study using a crack analysis procedure that considers the tensile behavior due to the steel fibers and the bond stress-slip relationship between the reinforcing bar and the concrete matrix. With the proposed model, the local yielding of reinforcing bars at a crack can be realistically simulated, enabling reasonably accurate predictions of the tensile behavior of R/FRC members. Analysis results obtained from the proposed model show good agreement with the test results measured by previous researchers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.