Abstract

Tension tests of metal-plate connected (MPC) joints for Chinese larch (Larix gmelinii (Rupr.) Rupr.) were conducted in four orientations. Load-deflection curves were obtained for each MPC jointed specimen. Ultimate tension load, translation stiffness, stiffness at large slip, and failure modes for each specimen were obtained. A Foschi 3-parameter model was found to fit the load-deflection curves very well. Wood grain, and MPC length and loading directions had significant effects on elastic deformation and stiffness at large slip of the MPC joints. Load parallel to the grain with MPC length parallel to load (AA) represented the highest elastic deformation, while load perpendicular to the grain and MPC parallel to load (AE) showed the lowest. Load perpendicular to grain with MPC length perpendicular to load (EE) presented the highest stiffness at large slip, AA the second, load parallel to grain-MPC length perpendicular to load (EA) the third, and AE the lowest. The translation stiffness and tension load showed similar trends in terms of the effect of test orientations. The ultimate tension load was reduced by 18.9% from AA to EA, 34.2% from AA to AE, and 36.8% from AA to EE. Multiple failure modes occurred at the MPC joint, including MPC shear failure, tooth withdrawal, and wood failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.