Abstract

The generation of an effective method for stimulating neuronal growth in specific directions, along well-defined geometries, and in numerous cells could impact areas ranging from fundamental studies of neuronal evolution and morphogenesis, to applications in biomedical diagnostics and nerve regeneration. Applied mechanical stress can regulate neurite growth. Indeed, previous studies have shown that neuronal cells can develop and extend neurites with rapid growth rates under applied "towing" tensions imparted by micropipettes. Yet, such methods are complex and exhibit low throughputs, as the tension is applied serially to individual cells. Here we present a novel approach to inducing neurite growth in multiple cells in parallel, by using a miniaturized platform with numerous microchannels. Upon connection of a vacuum to these microchannels, tension can be applied on multiple cells simultaneously to induce the growth of neurites. A theoretical model was also developed to understand the effect of tension on the dynamics of neurite development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.