Abstract

Myocardial ischemic injury results in altered membrane integrity, energy depletion, and electrolyte shifts leading to accumulation of intracellular Ca. However, analysis of the direct effects of Ca accumulation is complicated by other concomitant cellular changes produced by ischemia. The purpose of this study was to examine the effects of Ca loading in rat papillary muscles produced by Na+-K+ pump inhibition in oxygenated K+-free buffer. Changes in contractile characteristics, high energy phosphate, and elemental concentrations of subcellular compartments were measured. Electron probe X-ray microanalysis was used to assess elemental concentrations in cryosections. After 3 h of Na+-K+ pump inhibition, resting tension (RT) increased to 164% and developed tension (DT) fell to 16.8% of control values. One hour after return to complete buffer, RT and DT partially recovered but remained significantly different from the 180 to 240-min values for the control muscles. Electron probe X-ray microanalysis showed increases in cytoplasmic and mitochondrial Na and Ca and a decrease in K during Na+-K+ pump inhibition. Mitochondrial Ca was greater than 100-fold greater than Ca in control mitochondria. Morphologically, the majority of cells showed ultrastructural damage. The mean ATP level was 20% of control. After 1 h of recovery, the cells appeared more heterogeneous, and the mean mitochondrial Ca decreased, whereas mean cytoplasmic Ca increased. Further statistical analysis showed a bimodal distribution for Na, Ca, K, Mg, and Cl, which coincided with the morphologically mixed population of cells. This suggests that replacement of extracellular K+ was associated with restored electrolyte gradients in some cells and the persistent or further alteration of electrolytes in others. These results suggest that variable Ca accumulation and associated ATP depletion without the compounding effects of ischemia lead to cell injury similar to reperfusion injury reported in ischemic myocardium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.