Abstract
Low-symmetry crystals and polycrystals have anisotropic mechanical properties which, given better understanding of their deformation modes, could lead to development of next generation materials. Understanding how grains in a bulk polycrystal interact will guide and improve material modeling. Here, we show that tensile twins, in hexagonal close-packed metals, form where the macroscopic stress does not generate appropriate shear stress and vice versa. We use non-destructive high-energy X-ray diffraction microscopy to map local crystal orientations in three dimensions in a series of tensile strain states in a zirconium polycrystal. Twins and intragranular orientation variations are observed and it is found that deformation-induced rotations in neighboring grains are spatially correlated with many twins. We conclude that deformation twinning involves complex multigrain interactions which must be included in polycrystal plasticity models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.