Abstract

This study was undertaken to investigate the tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe (up to 1.5wt%) and Si (up to 2.5wt%). According to the results, the optimum tensile properties and hot tearing resistance were achieved at Fe/Si mass ratio of 1, where the α-Fe phase was the dominant Fe compound. Increasing the Fe/Si mass ratio above unity increased the amounts of detrimental β-CuFe platelets in the microstructure, deteriorating the tensile properties and hot tearing resistance. Decreasing the mass ratio below unity increased the size and fraction of Si needles and micropores in the microstructure, also impairing the tensile properties and hot tearing resistance. The investigation of hot-torn surfaces revealed that the β-CuFe platelets disrupted the tear healing phenomenon by blocking interdendritic feeding channels, while the a-Fe intermetallics improved the hot tearing resistivity due to their compact morphology and high melting point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.