Abstract

AbstractBased on Continuum Damage Mechanics (CDM), a damage model for glass‐bead‐filled modified polyphenylene oxide (GB/PPO) has been proposed to describe its damage behavior at various levels of tensile strain by considering the reduction of effective loading area. Hence, an equation for prediction of effective elastic modulus of the damaged GB/PPO composites in terms of the three principal true strains was derived. The tensile properties and damage behaviors of the GB/PPO composites with different volume percentages of glass beads were investigated using standard tensile tests and load‐unload tests, respectively. The addition of glass beads increases Young's modulus of PPO but has a weakening effect on its tensile strength. A maximum value of tensile work to break and tensile strain at break was found when 5 vol% of glass beads with a mean diameter of 11 μm was blended with PPO. These results were justified through microscopic examination of the fracture surfaces of the tensile specimens by using a scanning electron microscope (SEM). In‐situ observations of the strain damage processes were made through the SEM equipped with a tensile stage to determine the strain at fully debonding of glass beads. The volumetric strain of GB/PPO composites increases because of microcavitation during strain damage. In general, the prediction for the effective elastic modulus of the damaged GB/PPO composites at different true strains is slightly higher than the experimental results. The damage evolution rates after fully debonding of glass beads from the matrix are close to those predicted by the proposed damage model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.