Abstract
Abstract Unidirectional SiC/SiC composites fabricated with highly-crystalline and stoichiometric fibers and matrix, but with three different interfacial types (single-layer pyrolytic carbon (PyC), multilayered SiC/PyC, and pseudo porous SiC interfaces) were irradiated up to 1.0 × 1025 n/m2 (E > 0.1 MeV) at 1073 and 1273 K. Tensile, inter-laminar shear, and flexural properties were evaluated to compare the role of different interfaces on neutron irradiation behavior. There was nearly no significant degradation in tensile and flexural strength after high-temperature neutron irradiation, except for porous SiC interphase composite. Moreover, no meaningful reduction of tensile modulus was identified regardless of interphase types, although 20–40% degradation in flexural moduli occurred due to a reduction in inter-laminar shear modulus. In contrast, matrix cracking stress was significantly dependent on interfacial properties. Multilayer interphase composites exhibited the best irradiation stability. Irradiation instability of thick PyC and porous SiC interphase resulted in 20% and 40% degradations of matrix cracking stress, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.