Abstract

As a result of their unique combination of strength and ductility dual phase steels play an important role in reducing weight in automobile components and improving crashworthiness. The purpose of this paper is to quantify the crash performance of dual phase steels, as defined by the influence of low and high strain deformation rates (0·001 s-1 and 100 s-1 respectively), on the tensile and work hardening properties of a range of commercial dual phase products. The objective is to establish whether dual phase steels maintain their desirable mechanical property characteristics of low yield strength, high tensile strength and high work hardening rates during plastic deformation under the application of a high strain rate loading. The results confirmed that the yield/proof strength and tensile strength increased with increasing volume fraction of second phase constituents and increasing strain rate. In particular, a dual phase steel with a microstructure consisting of a significant volume fraction (>10–15%) of additional second phase material (bainite) is shown to display superior energy absorption properties. However, this is accompanied by poor ductility and work hardening characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.