Abstract

The tensile and high-cycle fatigue properties for 17-4 PH* stainless steels in three different conditions were investigated at temperatures ranging from room temperature to 400 °C. Results indicated that the yield strength and fatigue strength for the three conditions at a given temperature took the following order: condition H900 > condition A> condition H1150. The yield strength of each condition decreased with increasing temperature except for condition A, which was tested at 400 °C with longer hold times, where a precipitation-hardening effect took place. The S-N curves showed that the fatigue strengths of each condition in the short-life regime were decreased with an increase in temperature. In the long-life regime, the fatigue strengths of condition A at 400 °C were greater than those at lower temperatures as a result of an in-situ precipitation-hardening effect. The fatigue strengths of condition H900 in the long life regime at 300 °C were superior to those at lower temperatures, due to the mechanisms of surface oxidation and thermal activation of dislocations. Fractography observations indicated that a shift of fatigue fracture from surface to internal crack initiation occurred at higher temperatures (300 °C and 400 °C) with long fatigue lives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.