Abstract

An experimental paradigm was devised to remove the retinal basal lamina for defined periods of development: the basal lamina was dissolved by injecting collagenase into the vitreous of embryonic chick eyes, and its regeneration was induced by a chase with mouse laminin-1 and α2-macroglobulin. The laminin-1 was essential in reconstituting a new basal lamina and could not be replaced by laminin-2 or collagen IV, whereas the macroglobulin served as a collagenase inhibitor that did not directly contribute to basal lamina regeneration. The regeneration occurred within 6 h after the laminin-1 chase by forming a morphologically complete basal lamina that included all known basal lamina proteins from chick embryos, such as laminin-1, nidogen-1, collagens IV and XVIII, perlecan, and agrin. The temporary absence of the basal lamina had dramatic effects on retinal histogenesis, such as an irreversible retraction of the endfeet of the neuroepithelial cells from the vitreal surface of the retina, the formation of a disorganized ganglion cell layer with an increase in ganglion cells by 30%, and the appearance of multiple retinal ectopias. Finally, basal lamina regeneration was associated with aberrant axons failing to correctly enter the optic nerve. The present data demonstrate that a transient disruption of the basal lamina leads to dramatic and probably irreversible aberrations in the histogenesis in the developing central nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.