Abstract

Root-knot nematodes (RKN) (Meloidogyne spp.) constantly communicate with their host to establish and maintain specialized feeding cells. They likely regulate this interaction by monitoring host biology. As plant host biology is influenced by light and gene expression varies correspondingly, RKN gene transcription and biology likely follow similar patterns. We profiled RKN transcripts over a period of 24 h and identified approximately 1,000 differentially expressed genes (DEG) in nematode and model host Medicago truncatula, with the majority of DEG occurring in the middle of the dark period. Many of the plant DEG are involved in defense-response pathways, while the nematode DEG are involved in establishing infection, suggesting a strong host-nematode interaction occurring during the dark. To identify interacting genes, we developed a plant-nematode gene network based on DEG signals. The phenylpropanoid pathway was identified as a significant plant-nematode interacting pathway, representing four of 33 genes in the network. We further examined if this pathway interacts similarly in another host, tomato, by quantifying phenolic and flavonoid compounds produced by this pathway. Phenolic compounds showed a significant increase in production during the day in uninoculated plants as compared with during the night. However, during the dark period, there was an increase in flavonoid content in infected plants when compared with uninfected controls, indicating potential host defense mechanisms active during the height of nematode activity at night. This study elucidated cross-species interacting pathways that could be targeted to develop novel management strategies to these important pests.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.