Abstract

The anthropogenic radionuclides, 90Sr and 137Cs, were measured in two marine algal species, wakame seaweed (Undaria pinnatifida) and edible kelp (Laminaria longissima), collected in four coastal areas of Japan during 1998-2008. Although 90Sr and 137Cs could be detected at all sampling sites, the concentrations of 90Sr and 137Cs were at low levels and those in some samples were below the detection limit. These low concentrations and the small variation of both concentrations and the 137Cs/90Sr activity ratio indicate that the source of 90Sr and 137Cs detected in this study originated from the global fallout deposition following atmospheric nuclear-bomb tests in the past. There were no significant differences in both concentrations of 90Sr and 137Cs in wakame seaweed among three sampling sites. Although wakame seaweed is extensively distributed in southern and central Japan, it does not occur in northern areas and so edible kelp was monitored. The concentrations of 90Sr and 137Cs in edible kelp were significantly different from those in wakame seaweed in some sampling sites. These differences could be due to the difference in the concentrations of 90Sr and 137Cs in the surrounding seawater or the difference in species. The combined data with data from the previous report and the preexisting database showed that wakame seaweed incorporated 137Cs through a different pathway from that of 90Sr. The combined data also suggested that wakame seaweed responded differently to the source of 137Cs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.