Abstract

In-situ soil moisture was widely used to validate and calibrate the satellite-retrieved data of different footprints. However, it contained unavoidable uncertainty when used as spatial representative. This paper examined the uncertainty in pixel-wise soil moisture designed for satellite validation in the HiWATER project. Two in-situ data sets were used for the examination, which were carefully designed to capture the spatial heterogeneity of soil moisture at different scales. Our results indicated that the pixel-wise uncertainty increased with increasing extent. At a small area, the uncertainty referred to the natural spatial variability of in-situ soil moisture. With respect to a large area, sampling error of spatial soil moisture played an important role, particularly of dry condition. Temporally, the uncertainty was higher during rainfall than that after then. It suggested that in-situ soil moisture could be more spatially representative at a small area after rainfall, valuable for satellite validation. Uncertainty was correlated to soil moisture. It was strongly correlated to spatial mean at a small scale and was to the spatial pattern at a large scale. Results of this study offered some clues to examine the uncertainty of in-situ soil moisture for satellite validation.

Highlights

  • Soil moisture is an important state variable in the land surface systems

  • The peak occurs at low soil moisture and is depressed, which results in a flat probability density function (PDF)

  • The uncertainty of in-situ soil moisture was quantified with the combination of spatial variability and sampling error

Read more

Summary

Introduction

Soil moisture is an important state variable in the land surface systems. It plays an important role in water cycle [1] and plant growth [2]. Remote sensing is criticized for its inherently coarse spatial resolution [10]. The in-situ soil moisture involves notable uncertainty when it is used as spatial representatives for remote sensing footprints [6]. This uncertainty must be quantified for satellite validation and calibration

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.