Abstract

The drastic desiccation of the Aral Sea has led to severe desertification of the former lake areas. Dust storms occur frequently, causing regional environmental degradation of the Aral basin and a serious ecological disaster. Knowledge of the temporal variability in dust emissions and the potential diffusion characteristics of dust aerosol originating from the Aral Sea basin in recent years are, however, lacking. To address this knowledge gap, we studied the interannual and intraannual changes in dust aerosol from the Aral Sea basin and its potentially seasonal diffusion characteristics from 2005 to 2013 using Ozone Monitoring Instrument (OMI) aerosol data (2005–2013) and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Results show that the OMI aerosol index (AI) annual mean, standard deviation, median, and maximum values exhibit a strong increasing trend because of the continuous decrease in the water level since 2005. The annually mean OMI AI increases to 1.47 by 2013. Peak AI values are recorded in spring (March–May) and early winter (November–January of the following year), indicating notifying seasonal differences. The potential distance and height of air parcel trajectories to the northeast are greater than those to the west and south, whereas the air parcel trajectory proportion of the former is lower than that of the latter. The potential transport distance of dust aerosol to the northeast is greatest in spring and winter. This transport distance is less in autumn, with the minimum observed in summer. Dust transport distance to the west and south in different seasons is not significantly different. The present results may help in further understanding the emission, long-range transport, and deposition of dust from the dry lake bed of the Aral Sea as well as providing a motivation for the sensible use and protection of these tail-end lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.