Abstract
Different missense mutations in the single exon gene Mab21l2 have been identified in unrelated families with various bilateral eye malformations, including microphthalmia, anophthalmia, and coloboma, but the molecular function of Mab21l2 during eye development still remains largely unknown. We have established an in vivo Mab21l2-deficient eye development model in chick, by using a Mab21l2 RNA interference construct that we electroporated in ovo in prospective retinal cells. In addition, we designed a Mab21l2 gain-of-function electroporation vector. Mab21l2-modulated retinas were analyzed on consecutive sections in terms of morphology, and molecular markers for apoptosis, cell proliferation, and retinogenesis. Our Mab21l2-deficient chick model mimics human ocular phenotypes. When Mab21l2 is downregulated prior to optic vesicle formation, the embryos develop anophthalmia, and Mab21l2 inhibition by optic cup stages results in a microphthalmic colobomatous phenotype. Our results show that inhibition of Mab21l2 affects cell proliferation, cell cycle exit, and the expression of Atoh7/Ath5, NeuroD4/Ath3, Isl1, Pax6, AP-2α, and Prox1. In addition, Mab21l2 overexpression hampers cell cycle exit and differentiation of retinal progenitor cells (RPCs). Our results highlight the importance of a regulated temporal expression of Mab21l2 during eye development: At early stages, Mab21l2 is required to maintain RPC proliferation and expansion of cell number; before retinogenesis, a decrease in Mab21l2 expression in proliferating RPCs is required for cell cycle exit and differentiation; during retinogenesis, Mab21l2 is chronologically upregulated in RGCs, followed by differentiated horizontal and amacrine cells and cone photoreceptor cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.