Abstract

Infarcts of the neonatal cerebral cortex can lead to progressive epilepsy, which is characterized by time-dependent increases in seizure frequency after the infarct and by shifts in seizure-onset zones from focal to multi-focal. Using a rat model of unilateral perinatal hypoxia–ischemia (PHI), where long-term seizure monitoring had previously demonstrated progressive epilepsy, evoked field potentials (EFPs) were recorded in layers II/III of coronal neocortical slices to analyze the underlying time-dependent, network-level alterations ipsilateral vs. contralateral to the infarct. At 3weeks after PHI, EFPs ipsilateral to the infarct were normal in artificial cerebrospinal fluid (ACSF); however, after blocking GABAA receptors with bicuculline methiodide (BMI, 30μM), the slices with an infarct were more hyperexcitable than slices without an infarct. At 3weeks, contralateral PHI slices had responses indistinguishable from controls. Six months after PHI in normal ACSF, both ipsi- and contralateral slices from rats with cortical infarcts showed prolonged afterdischarges, which were only slightly augmented in BMI. These data suggest that the early changes after PHI are localized to the ipsilateral infarcted cortex and masked by GABA-mediated inhibition; however, after 6months, progressive epileptogenesis results in generation of robust bilateral hyperexcitability. Because these afterdischarges were only slightly prolonged by BMI, a time-dependent reduction of GABAergic transmission is hypothesized to contribute to the pronounced hyperexcitability at 6months. These changes in the EFPs coincide with the seizure semiology of the epilepsy and therefore offer an opportunity to study the mechanisms underlying this form of progressive pediatric epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.