Abstract
Important cellular processes such as migration, differentiation, and development often rely on precise timing. Yet, the molecular machinery that regulates timing is inherently noisy. How do cells achieve precise timing with noisy components? We investigate this question using a first-passage-time approach, for an event triggered by a molecule that crosses an abundance threshold and that is regulated by either an accumulating activator or a diminishing repressor. We find that either activation or repression outperforms an unregulated strategy. The optimal regulation corresponds to a nonlinear increase in the amount of the target molecule over time, arises from a tradeoff between minimizing the timing noise of the regulator and that of the target molecule itself, and is robust to additional effects such as bursts and cell division. Our results are in quantitative agreement with the nonlinear increase and low noise of mig-1 gene expression in migrating neuroblast cells during Caenorhabditis elegans development. These findings suggest that dynamic regulation may be a simple and powerful strategy for precise cellular timing.
Highlights
Important cellular processes such as migration, differentiation, and development often rely on precise timing
We have demonstrated that regulation by an accumulating activator or a diminishing repressor increases the precision of threshold crossing by a target molecule, beyond the precision achievable with constitutive expression alone
Our minimal model is sufficient to explain both the high degree of nonlinearity and the low degree of noise in the dynamics of mig-1 in C. elegans neuroblasts, suggesting that these cells use regulated expression to terminate their migration with increased temporal precision
Summary
Important cellular processes such as migration, differentiation, and development often rely on precise timing. Our results explain the nonlinear increase and low noise of mig-1 gene expression in migrating neuroblast cells during Caenorhabditis elegans development, and suggest that mig-1 regulation is dominated by repression for maximal temporal precision. These findings suggest that dynamic regulation may be a simple and powerful strategy for precise cellular timing. Molecular events are subject to unavoidable fluctuations, because molecule numbers are small and reactions occur at random times [10, 11] Cells combat these fluctuations using networks of regulatory interactions among molecular species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.