Abstract
The response of electrodissolution dynamics of nickel in sulfuric acid electrolyte was studied and categorized using efficient signal processing techniques. Time-frequency and phase analysis revealed complex dynamical patterns in anodic currents observed in the system. These patterns which respond to three-dimensional changes in the electrolyte and surface conditions, have a multitude of spatio-temporal properties which proved sensitive to oscillatory voltage perturbations, allowing signal recognition through distinct response patterns. Experimental work included studies on identification of control parameters, characterization of subsequent temporal patterns and examination of system response to information in the form of oscillatory voltage perturbations. Various data processing and pattern recognition techniques revealed the complexity and dynamics of these distinctive responses, which illustrate the capacity of the system to store information, with varying memory lengths. These patterns can be recalled upon excitation with particular perturbation cues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.