Abstract

The aim of this study was to compare the time course of motion-related source activities evoked by the onset of different kinds of visual motion stimuli in human subjects. Event-related potentials (ERP) were recorded from 64 scalp electrodes in ten healthy subjects while they were viewing four different types of motion stimuli (translation, rotation, expansion and contraction). Following a new approach combining a current density reconstruction with clustering algorithms, source maxima in the time range from 50 to 400 ms after the onset of the visual stimulus were localized and the time courses of activation were elaborated. Six regions contributed significantly to source activity, half originating in the occipital lobe and half in the right parietal and right temporal cortex. The comparison of their time courses led to the following conclusions: (i) the different kinds of motion stimuli activated about the same areas of the brain but with different temporal patterns. (ii) Mainly parietal and extrastriate areas, but not V1/V2, were significantly involved in the differentiation of different kinds of motion. (iii) Contrasting the different kinds of motion onsets, responses from parietal areas were found mainly before those from lateral occipital areas. (iv) The classically defined N2 and P2 components were significantly different among the four motion conditions, but not P1. The N2 motion-related component was elicited not only by lateral occipital areas and middle temporal areas but also by right parietal areas. (v) The rotation condition evoked a novel component P180, concomitant with an increased activity in the left middle temporal gyrus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.