Abstract
Trees are modular organisms that adjust their within-crown morphology and physiology in response to within-crown light gradients. However, whether within-plant variation represents a strategy for optimizing light absorption has not been formally tested. We investigated the arrangement of the photosynthetic surface throughout one day and its effects on the photosynthetic process, at the most exposed and most sheltered crown layers of a wild olive tree (Olea europaea L.). Similar measurements were made for cuttings taken from this individual and grown in a greenhouse at contrasted irradiance-levels (100 and 20% full sunlight). Diurnal variations in light interception, carbon fixation and carbohydrate accumulation in sun leaves were negatively correlated with those in shade leaves under field conditions when light intensity was not limiting. Despite genetic identity, these complementary patterns were not found in plants grown in the greenhouse. The temporal disparity among crown positions derived from specialization of the photosynthetic behaviour at different functional and spatial scales: architectural structure (crown level) and carbon budget (leaf level). Our results suggest that the profitability of producing a new module may not only respond to construction costs or light availability, but also rely on its spatio-temporal integration within the productive processes at the whole-crown level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.